parent
da33ab0f18
commit
bc90acc41f
5 changed files with 133 additions and 0 deletions
@ -0,0 +1,2 @@ |
|||||||
|
# GOTCHA! Exercise time |
||||||
|
see src/gotcha.hs |
@ -0,0 +1,5 @@ |
|||||||
|
# Exercises: Compose Instances |
||||||
|
see src/gotcha.hs |
||||||
|
|
||||||
|
## Bifunctor |
||||||
|
see src/bifunctor.hs |
@ -0,0 +1,20 @@ |
|||||||
|
{-# LANGUAGE InstanceSigs #-} |
||||||
|
module IdentityT where |
||||||
|
|
||||||
|
newtype IdentityT f a = IdentityT { runIdentityT :: f a } |
||||||
|
|
||||||
|
instance Functor f => Functor (IdentityT f) where |
||||||
|
fmap f (IdentityT fa) = IdentityT $ fmap f fa |
||||||
|
|
||||||
|
instance Applicative f => Applicative (IdentityT f) where |
||||||
|
pure a = IdentityT $ pure a |
||||||
|
|
||||||
|
(IdentityT ff) <*> (IdentityT fa) = |
||||||
|
IdentityT $ ff <*> fa |
||||||
|
|
||||||
|
instance Monad m => Monad (IdentityT m) where |
||||||
|
return = pure |
||||||
|
|
||||||
|
(>>=) :: IdentityT m a -> (a -> IdentityT m b) -> IdentityT m b |
||||||
|
(IdentityT ma) >>= f = |
||||||
|
IdentityT $ ma >>= (runIdentityT . f) |
@ -0,0 +1,40 @@ |
|||||||
|
{-# LANGUAGE InstanceSigs #-} |
||||||
|
module BiFunctor where |
||||||
|
|
||||||
|
import Data.Bifunctor |
||||||
|
|
||||||
|
data Deux a b = Deux a b |
||||||
|
instance Bifunctor Deux where |
||||||
|
bimap :: (a -> b) -> (c -> d) -> Deux a c -> Deux b d |
||||||
|
bimap f g (Deux a b) = Deux (f a) (g b) |
||||||
|
|
||||||
|
data Const a b = Const a |
||||||
|
instance Bifunctor Const where |
||||||
|
bimap f _ (Const a) = Const (f a) |
||||||
|
|
||||||
|
data Drei a b c = Drei a b c |
||||||
|
instance Bifunctor (Drei a) where |
||||||
|
bimap f g (Drei a b c) = Drei a (f b) (g c) |
||||||
|
|
||||||
|
data SuperDrei a b c = SuperDrei a b |
||||||
|
instance Bifunctor (SuperDrei a) where |
||||||
|
bimap f _ (SuperDrei a b) = SuperDrei a (f b) |
||||||
|
|
||||||
|
data SemiDrei a b c = SemiDrei a |
||||||
|
instance Bifunctor (SemiDrei a) where |
||||||
|
bimap _ _ (SemiDrei a) = SemiDrei a |
||||||
|
|
||||||
|
data Quadriceps a b c d = Quadzzz a b c d |
||||||
|
instance Bifunctor (Quadriceps a b) where |
||||||
|
bimap f g (Quadzzz a b c d) = Quadzzz a b (f c) (g d) |
||||||
|
|
||||||
|
data Either' a b = Left' a | Right' b |
||||||
|
instance Bifunctor Either' where |
||||||
|
bimap f _ (Left' a) = Left' (f a) |
||||||
|
bimap _ g (Right' b) = Right' (g b) |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -0,0 +1,66 @@ |
|||||||
|
{-# LANGUAGE InstanceSigs #-} |
||||||
|
module Gotcha where |
||||||
|
|
||||||
|
newtype Identity a = Identity { runIdentity :: a } |
||||||
|
|
||||||
|
instance Functor Identity where |
||||||
|
fmap f (Identity a) = Identity $ f a |
||||||
|
|
||||||
|
instance Applicative Identity where |
||||||
|
pure = Identity |
||||||
|
(Identity f) <*> (Identity a) = Identity (f a) |
||||||
|
|
||||||
|
-- |
||||||
|
newtype Compose f g a = Compose { getCompose :: f (g a) } deriving (Eq, Show) |
||||||
|
|
||||||
|
instance (Functor f, Functor g) => Functor (Compose f g) where |
||||||
|
fmap f (Compose fga) = Compose $ (fmap . fmap) f fga |
||||||
|
|
||||||
|
instance (Applicative f, Applicative g) => Applicative (Compose f g) where |
||||||
|
pure :: a -> Compose f g a |
||||||
|
pure a = Compose $ pure (pure a) |
||||||
|
-- The next one took me a while. I find the following usefull in |
||||||
|
-- understanding the solution. Ignoring the Compose part of it we |
||||||
|
-- have a type signature of: |
||||||
|
-- :: f (g (a -> b)) -> f (g a) -> f (g b) |
||||||
|
-- In the applicative the following would be easy: |
||||||
|
-- :: f (g a -> g b) -> f (g a) -> f (g b) |
||||||
|
-- as that would just (<*>), if we somehow find a way to go from |
||||||
|
-- :: f (g (a -> b)) to (f (g a -> g b)) using applicative and/or functor |
||||||
|
-- functions we would be set. |
||||||
|
-- If you ignore the f part of it, you see we have: |
||||||
|
-- :: g (a -> b) -> g a -> g b which is nothing but (<*>) |
||||||
|
-- We can also see this as: |
||||||
|
-- :: g (a -> b) -> (g a -> g b) |
||||||
|
-- In other words this is a function that returns another function where |
||||||
|
-- we know that the first argument/function is embeded in an f. We can use |
||||||
|
-- the fact that f is a functor to actually apply the function: |
||||||
|
-- :: fmap (g (a -> b) -> (g a -> g b)) (f (g (a -> b))) :: f (g a -> g b) |
||||||
|
-- Which brings us to: |
||||||
|
-- :: (<*>) f a = (fmap (<*>) f) <*> a |
||||||
|
(<*>) :: Compose f g (a -> b) -> Compose f g a -> Compose f g b |
||||||
|
(Compose h) <*> (Compose c) = Compose $ |
||||||
|
(fmap (<*>) h) <*> c |
||||||
|
|
||||||
|
instance (Foldable f, Foldable g) => Foldable (Compose f g) where |
||||||
|
foldMap :: (Monoid m) => (a -> m) -> Compose f g a -> m |
||||||
|
foldMap f (Compose fga) = (foldMap . foldMap) f fga |
||||||
|
|
||||||
|
-- foldMap :: (Monoid m, Foldable t) => (a -> m) -> (t a -> m) |
||||||
|
-- (.) :: (b -> c) -> (a -> b) -> a -> c |
||||||
|
-- Foldmap for f :: (g a -> m) -> f (g a) -> m |
||||||
|
-- FoldMap for g :: (a -> m) -> g a -> m |
||||||
|
-- (foldMap . foldMap) :: (a -> m) -> f (g a) -> m |
||||||
|
|
||||||
|
instance (Traversable f, Traversable g) => Traversable (Compose f g) where |
||||||
|
traverse :: Applicative f' => (a -> f' b) -> Compose f g a |
||||||
|
-> f' (Compose f g b) |
||||||
|
traverse f (Compose fga) = Compose <$> ((traverse . traverse) f fga) |
||||||
|
|
||||||
|
-- traverse :: (Applicative f, Traversable t) => (a -> f b) -> t a -> f (t b) |
||||||
|
-- traverse for f :: ((g a) -> f' (g b)) -> f (g a) -> f' (f (g b)) |
||||||
|
-- traverse for g :: (a -> f' b) -> g a -> f' (g b) |
||||||
|
-- (traverse . traverse) :: (a -> f' b) -> f (g a) -> f' (f g b) |
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in new issue